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Abstract 23 

 24 

Emotion research has gained enormous momentum through the emerging field of comparative 25 

affective science, which seeks to uncover important aspects about the emotional life of 26 

nonhuman animals. This chapter reviews the limitations of relying solely on behavioural 27 

information to derive information on affective states in animals. Instead, it emphasizes the 28 

value of combining behavioural coding methods with novel non-invasive physiological 29 

methods. We specifically explore advances in automated behavioural tracking, facial action 30 

coding, infrared thermography (IRT), infrared videography (IR) and microwave radar 31 

technologies. These promising new tools offer insights into internal states without restraining 32 

or potentially harming animals, thus providing more ethical empirical assessment. We argue 33 

that multi-dimensional approaches that combine behavioural and physiological data enable 34 

richer and more accurate interpretations of animal emotions. As future avenue, we propose 35 

“behaviour-physiology profiles” to uncover biological and evolutionary foundations of 36 

affective processes across species. We believe such an integrated framework holds great 37 

promise for advancing animal welfare, communication science and our understanding of the 38 

complex emotional life of animals. 39 
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Introduction 40 

 41 

In recent years, a growing body of research has converged on the consensus that nonhuman 42 

animals (hereafter animals) experience emotions, which they communicate to social audiences 43 

through multimodal signals related to the body, face, and voice, as well as via behavioural cues 44 

(Briefer, 2012; Briefer et al., 2015; Heesen, Austry, et al., 2022; Kret et al., 2020, 2022; 45 

Slocombe & Zuberbühler, 2007; Soldati et al., 2022). The increasingly widespread recognition 46 

that animals have emotions is reflected in the emergence of comparative affective science as a 47 

vibrant new discipline, its growing popularity reflecting broader trends in the psychological 48 

sciences towards an era of ‘affectivism’ (Dukes et al., 2021). In particular, many studies now 49 

aim to illuminate the evolutionary origins and mechanisms underlying the emotional lives of 50 

animals and humans, using a range of methodological approaches, including behavioural, 51 

cognitive and physiological assessments (Briefer et al., 2015; Chotard et al., 2018; Demuru et 52 

al., 2015; Dezecache et al., 2017; Ermatinger et al., 2019; Heesen, Austry, et al., 2022; Kret et 53 

al., 2020, 2022; Mendl et al., 2009; van Berlo et al., 2023). 54 

One prominent and increasingly influential approach in comparative affective science 55 

focuses on how animals express emotional states, thereby highlighting the communicative and 56 

adaptive role of potential emotional signals (Descovich et al., 2017; Heesen, Austry, et al., 57 

2022; Kret et al., 2020). At the same time, there is increasing research on the perception of 58 

such expressions, assessed mainly using behavioural indicators of attention, such as through 59 

eye movements and head direction, or through match-to-sample tests (Heesen et al., 2024; Kret 60 

et al., 2016; Kret & van Berlo, 2021; Parr, 2004; Parr et al., 1998, 2007; van Berlo et al., 2023). 61 

Studies on the expression and perception of (presumable) emotional states span multiple 62 

taxonomic orders within the animal kingdom, including carnivores (Maglieri et al., 2024), 63 

ungulates (Briefer et al., 2015; Camerlink et al., 2018; Smith et al., 2016) and rodents 64 



 4 

(Dolensek et al., 2020), with a particular focus on nonhuman primates (primates hereafter) 65 

(Davila Ross et al., 2007; Demuru et al., 2015; Heesen et al., 2024; Kret et al., 2016; Parr et 66 

al., 1998; Pritsch et al., 2017).  Studies typically focus on bodily, facial, and vocal expressions 67 

in order to derive conclusions about autonomic arousal (ranging from low to high activation) 68 

and valence (ranging from pleasant to unpleasant) dimensions based on the use of these 69 

expressions across varying social or ecological contexts. While valence is often estimated from 70 

the expression’s contextual use, such as during conflict or play (Demuru et al., 2015; Heesen, 71 

Austry, et al., 2022), arousal is typically assessed based on behavioural markers of underlying 72 

physiological states, including self-manipulatory behaviours (Kret et al., 2016; Sclafani et al., 73 

2012), or more directly via physiological measures related to the body and skin temperatures 74 

(Descovich et al., 2017; Kano et al., 2016; Parr, 2001).  75 

Reflecting the ethological tradition, the use of observational behavioural assessments 76 

has historically been, and remains, highly relevant to our understanding of animal cognition, 77 

emotion and welfare (Feighelstein, Ehrlich, et al., 2023; Matthews et al., 2016), notably as it 78 

avoids restraining animals and using invasive measures. In this way, an observational approach 79 

can be applied across numerous settings, including in captivity and the wild, thus offering 80 

greater ecological and ethical validity. However, despite important contributions in this area 81 

(Darwin, 1993; Goodall, 1986; Tinbergen, 1963), behavioural observations alone can only 82 

offer limited insights into underlying mechanisms, and may sometimes even be misleading 83 

(Waller et al., 2017). In long-linguistic subjects, including both animals as well as pre-verbal 84 

human infants, the identification of emotional states through behaviour is often speculative, 85 

unless supplemented by additional measures and tightly controlled experimental paradigms. 86 

Because such individuals cannot be directly asked about their subjective experiences, 87 

researchers rely on indirect indicators of emotional states, such as bodily and facial expressions. 88 

A possible exception are extensively trained or enculturated animals, such as language-89 
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competent great apes (e.g., Washoe, Nim, Kanzi, Koko: Krause & Beran, 2020). For instance, 90 

in a recent study, the language-competent bonobo Kanzi was able to successfully match 91 

playbacks of conspecific alarm calls to the associated lexigram (symbols for scare and snake) 92 

indicative of his ability to make affect-based judgements (Lahiff et al., 2025). However, with 93 

all such language-competent apes now sadly deceased, and their language-training 94 

programmes no longer in operation, the field’s empirical focus has already (rightly) shifted 95 

focus towards the more ecologically valid intent to understand animal emotions under natural 96 

conditions and their evolutionary foundations.  97 

While there is growing agreement that many animals, particularly vertebrates and some 98 

invertebrates, are capable of valenced experience, also known as sentience (Browning & Birch, 99 

2022), we still lack definitive methods to identify and characterize the nature of these subjective 100 

experiences, including emotions, across species (Feldman Barrett, 2017; Kret et al., 2022). 101 

Research must therefore rely on a combination of physiological and visible (i.e., codable) 102 

behavioural data, to generate estimations of animal inner experience. The need to understand 103 

how physiology drives behaviour is still emerging and calls for the development of new 104 

methodologies to carefully and reliably determine under which circumstances certain 105 

behaviours may, or may not, serve as valid indicators of emotions. Even in human adults, facial 106 

expressions can be produced deliberately (known as “posed expressions, e.g., Elfenbein et al., 107 

2007) and may not accurately reflect a person’s internal state, leaving recipients vulnerable to 108 

misinterpretation and deception (Zloteanu et al., 2018). Although expressive behaviour is an 109 

essential component of emotional experiences, emotions predominantly originate at the 110 

physiological and neural level (although there are critical debates on causality Anderson & 111 

Adolphs, 2014). This underscores the need to incorporate more than just behavioural markers 112 

in comparative studies to avoid potential pitfalls. 113 

In animals, there is now ample evidence that communicative signals can be flexibly 114 
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used even when produced in (presumable) high-arousal contexts ranging from pleasant to 115 

unpleasant valence (Dezecache & Berthet, 2018; Heesen, Sievers, et al., 2022). For instance, 116 

chimpanzees detecting a snake – a dangerous predator that represents a serious threat to 117 

survival – seem to be able to suppress the emission of alarm calls if the audience is already 118 

aware of the threat (Crockford et al., 2012, 2017; Schel et al., 2013). Several primate species 119 

can modulate facial expressions during social play by adjusting their duration and intensity 120 

depending on whether a social partner is visually attentive (bonobos: Demuru et al., 2015; 121 

gibbons: Scheider et al., 2016; orangutans: Waller et al., 2015) or depending on the play type, 122 

age of the partner, or presence of specific individuals in the audience (Cordoni & Palagi, 2011; 123 

Demuru et al., 2015; Flack et al., 2004). While the degree of conscious volitional control is 124 

difficult to assess, the findings nevertheless suggest that these expressions function to inform 125 

about subsequent or future actions and events, rather than only offering honest readouts of 126 

emotions (Waller et al., 2017). Like human expressions, animal expressions thus need not to 127 

be strictly tethered to specific emotional states as in “emotion X causes expression Y” (Berthet 128 

et al., 2023; Heesen, Sievers, et al., 2022), though the nature of – specifically clarity in - this 129 

relationship may vary across species (Dolensek et al., 2020). Hence, the affective 130 

underpinnings of a behaviour in question need to be carefully examined across varying socio-131 

ecological contexts and carefully compared against additional neurobiological or physiological 132 

data. Descovich et al. (2017 p. 410 ) argue that voluntary control of human facial expressions 133 

weakens as emotional intensity increases, resulting in so-called 'emotional leakage'   (Porter et 134 

al., 2012). Similar patterns may also occur in animals, insofar as heightened arousal could lead 135 

to stronger or more conserved expression patterns (Heesen, Sievers, et al., 2022). This calls for 136 

a new multi-dimensional affective-cognitive approach (Heesen, Sievers, et al., 2022), which 137 

avoids drawing generalized conclusions a priori based on behavioural contexts and prevents 138 

anthropomorphism by prioritizing instead a careful, objective, and case-by-case analysis. 139 
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In this chapter, our stance is that the term ‘emotional expression’, which is readily used 140 

across the literature both in animals and humans and dates back to even Darwin himself 141 

(Darwin, 1872; Kret et al., 2020; Kret & van Berlo, 2021; Shariff & Tracy, 2011; Walker et 142 

al., 2010) may be unclear, incomplete or even misleading unless supported by additional 143 

neurobiological or physiological evidence. For example, the bared-teeth facial expression in 144 

primates is often assumed to indicate fear or apprehension. This is because it is typically 145 

produced by subordinates (though the directionality in production might depend on the 146 

hierarchy dynamics of the respective group or species) during tense situations, such as 147 

following aggression (Kim et al., 2022; Vlaeyen et al., 2022). Although some researchers even 148 

refer to it as “fear grimace” (Gothard et al., 2004), research indicates this expression may be 149 

driven by multiple internal states of varying arousal and valence categories depending on the 150 

context (Heesen, Sievers, et al., 2022). For example, when a bonobo produces the bared-teeth 151 

face in response to an aggressive attack by a dominant conspecific, this might be taken as 152 

evidence of distress or fear (Heesen, Austry, et al., 2022). However, bonobos also emit this 153 

expression during sexual interactions with varying social partners and across various contexts, 154 

including  upon food discovery, which could reflect positive and/or negative valence states and 155 

varying arousal levels (Vlaeyen et al., 2022). Because behavioural and contextual data alone 156 

may be insufficient to accurately identify and differentiate physically similar expressions, 157 

researchers should thus adopt a more informative and holistic approach that combines multiple 158 

behavioural and physiological measures. Historically, this has been reserved to more invasive 159 

laboratory studies, such as with rodent models, where underlying physiology and its relation to 160 

behavioural and neural correlates can be investigated in restrained animals. Although it is now 161 

possible to gather physiological data  in more ethical manners, such as from tethered or freely 162 

moving domestic animals who are willing to tolerate wearable physiological devises like heart 163 

rate belts (e.g., farm animals: Briefer et al., 2015), collecting equivalent data from non-164 



 8 

domesticated unrestrained subjects, especially in the wild, is much more challenging from a 165 

practical and ethical standpoint. On a positive note, this challenge has catalysed the emergence 166 

of novel, contact-free non-invasive methods which, combined with other measurement 167 

approaches, now offer promising new insights into animal emotions.  168 

Our goal, in this chapter, is to review successful efforts in the emerging field of 169 

comparative affective science that exemplify a combinatorial approach in the comparative 170 

study of affect and emotions, and from there, to provide novel ideas on how the field could 171 

move forward. We first review the latest advances on behavioural and analysis tools, including 172 

state-of-the-art use of ethogram annotations, systematic facial expression coding and analysis 173 

techniques and automated behavioural tracking technologies. We then focus on emerging infra-174 

red-related and microwave radar technologies to detect arousal and consider how these 175 

technologies could be combined with others to inform on animal emotional experiences across 176 

various settings. While recent studies have delivered important findings investigating 177 

physiological arousal in primates (Dezecache et al., 2017; Ermatinger et al., 2019; Kano et al., 178 

2016), physiology on its own likewise represents one component necessary for the study of 179 

emotional experiences and communication. With further validation and refinement, the 180 

integration of non-invasive physiological methods with state-of-the-art behavioural assays will 181 

offer an enhanced and richer comparative perspective on animal emotion. By revealing how 182 

physiological states correlate with observable behaviours, a holistic approach – as discussed 183 

here - can offer new insights into the biological and evolutionary underpinnings of emotional 184 

experiences. 185 

 186 

State-of-the-art behavioural analyses: From manual coding to automated tracking  187 

 188 

In recent years, machine learning and computer vision techniques have substantially advanced 189 
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the automatic extraction of behavioural information from images and videos of animals. 190 

Traditionally, behavioural video coding remains largely constrained by manual efforts and is 191 

often negatively affected by observer fatigue, bias, or mistakes. Beyond the significant time 192 

investment, human coders are also limited by the quantity and quality of information that can 193 

be perceived by human senses - particularly when studying fast-paced behavioural processes 194 

or species whose anatomy or umwelt (Uexküll, 2013) differs markedly from our own. While 195 

the field of animal behaviour is still gradually introducing automated methods in their data 196 

collection pipelines, a lot of innovations have already allowed the collection of finer scale data 197 

in a fraction of the conventional annotation times. 198 

Within the field of animal welfare and livestock management, computer vision 199 

technology has already been widely applied to attain more accurate and automated assessments 200 

of livestock behaviours, health and welfare (Tzanidakis et al., 2023), including of the 201 

behavioural recognition of pain, aggression and fear, such as in pigs, cows, chickens and other 202 

farm animals (Alameer et al., 2020; Chen et al., 2023; Matthews et al., 2016; Yang & Xiao, 203 

2020). Such automated systems are particularly valuable for early detection of health and 204 

welfare concerns, such as diseases and injuries, contributing to more ethical and sustainable 205 

husbandry practices. Recently, methodological advances have expanded automatic recognition 206 

from simpler individual state-level behaviours, like resting or feeding, to more complex social 207 

interactions with simultaneous tracking of multiple individuals. For instance, Gan et al. (2021) 208 

developed a system for quantifying social nosing and play in pigs using keypoint estimation, 209 

while An et al. (2023) introduced a method for predicting the three-dimensional shape of 210 

multiple pigs concurrently, allowing quantification of individual and social behaviours, 211 

including potential communicative signals. The posture and motion of pig tails, for example, 212 

have been proposed as indicators of the animals’ physical and emotional states (Camerlink & 213 

Ursinus, 2020), leading to the development of automated methods to detect tail movements or 214 
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health issues related to tail injuries and biting events (D’Eath et al., 2021; Liu et al., 2020). For 215 

now, the advances described here are mostly targeted for applied applications to assess pain, 216 

fear and aggression; however, they clearly present exciting scope for broader application to 217 

understand the relationship between affect, communication and sociality in other animals and 218 

settings, particularly species living in open environments, whose behaviour can be reliably 219 

tracked. 220 

Another methodology where automated coding is showing promising advances is the 221 

Facial Action Coding System (FACS). This methodology, informed by objective anatomical 222 

analysis, aims to detect distinct facial muscle movements, known as action units, which 223 

underlie facial expressions. Although FACS was originally developed to analyse human facial 224 

movements (Ekman & Friesen, 1984), it has since been adapted for use across multiple species 225 

and taxa, including macaques (Morozov et al., 2021; Parr et al., 2010), chimpanzees (Vick et 226 

al., 2007), cats (Caeiro et al., 2017), horses (Wathan et al., 2015) and dogs (Waller et al., 2013), 227 

see Waller et al. (2020) for review. Thanks to computational advances, FACS analysis for 228 

human faces can now be done automatically using a number of specialised softwares, including 229 

iMotions (iMotions.com) and FaceReader (noldus.com/facereader) as well as open-source 230 

software, including OpenFace (https://github.com/TadasBaltrusaitis/OpenFace). Note, 231 

however, that there is still room for improvement to increase diversity into the ground truth 232 

coding for such algorithms as they were largely trained from expressions of western 233 

populations. To our knowledge, there is currently no dedicated systematic automated tool 234 

available for analysing FACS in animals. One recent study with captive gorillas applied 235 

OpenFace software to analyse play faces (Cordoni et al., 2025), but the accuracy in applying 236 

this method to quantify primate facial expressions still requires further careful validation. Also 237 

in monkeys, automated classification of facial action units and expressions has been explored 238 

(Tlaie, Hay, et al., 2025), though again this remains largely limited to more controlled, captive 239 

https://github.com/TadasBaltrusaitis/OpenFace
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settings (but see Carugati et al., 2025 for research on wild lemurs). Given the extensive effort 240 

and time investment needed for manual FACS coding, further validation and development of 241 

suitable software to analyse animal faces represent important methodological directions for 242 

comparative affective science. Despite its early stages, the automatization of FACS in animals 243 

thus represents a promising and important future research line.  244 

Another emerging computational approach involves the use of machine learning 245 

classifiers to automatically detect facial or bodily landmarks of animals, which can then be 246 

used to infer possible emotional states based on the relative position of each landmark. This 247 

machine-learning based method has already been effective in detecting potentially pain-related 248 

behaviour of domestic cats (Feighelstein, Henze, et al., 2023; Martvel, Lazebnik, et al., 2024; 249 

Martvel, Shimshoni, et al., 2024), dogs (Ferres et al., 2022), and horses (Hummel et al., 2020). 250 

A potentially simpler and more powerful emerging method is the use of deep learning models 251 

on inputted images and videos to directly analyse behaviours identified as potentially 252 

representing internal states. This approach eliminates the need to extract higher level data, like 253 

action units or landmarks, and instead directly allows models to learn subtle patterns from all 254 

the available information contained in one or multiple images (Boneh-Shitrit et al., 2022; 255 

Corujo et al., 2021; Feighelstein, Ehrlich, et al., 2023; Feighelstein et al., 2022). This bottom-256 

up approach has already demonstrated impressive results and even outperformed human coders 257 

in some cases (Feighelstein et al., 2025). Nevertheless, deep learning models should still be 258 

treated with caution, as they may struggle to generalize across different systems and species 259 

and often require large amounts of training data, typically coded by humans, thus introducing 260 

potential bias (see above). In this respect, while machine learning offers more systematic and 261 

efficient analysis, its performance hinges on the quality of human input (or “ground truth”), 262 

rendering it prone to flaws if the original training data is inaccurate or inconsistent. Therefore, 263 

while machine learning represents a promising new direction in behavioural analysis, careful 264 
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consideration and rigorous validation are essential steps to ensure reliability and accuracy. 265 

Compared to other animals including birds or quadrupedal mammals, identifying and 266 

tracking behaviour in wild primates can be especially challenging due to the flexible use of 267 

their limbs, mixed use of substrates (arboreal and terrestrial) and the noisy or low-light nature 268 

of their forest environments. Especially in the latter setting, algorithms may struggle to reliably 269 

separate subjects from each other or from the background (Wiltshire et al., 2023). Despite these 270 

challenges and variability in model performances, several methods and datasets have now been 271 

developed to automatically monitor and quantify behaviours in primates, including locomotion, 272 

resting, grooming, and foraging, using video footage from camera traps in the wild (Brookes, 273 

Mirmehdi, Stephens, et al., 2024), drones (Duporge et al., 2024) and in zoos (Ma et al., 2023). 274 

This reflects a broad array of advancements in automated tracking of primate behaviour over 275 

the past decade (Vogg et al., 2025), from posture estimation (Bala et al., 2020; Kaneko et al., 276 

2024; Wiltshire et al., 2023; Xing et al., 2024), to behavioral classification (Brookes, 277 

Mirmehdi, Kuhl, et al., 2024; Fuchs et al., 2024; Ma et al., 2024), and facial recognition (Loos 278 

& Ernst, 2013; Schofield et al., 2019; Schofield et al., 2023). Thanks to rapid pace of 279 

improvements in AI-assisted research, we predict that behaviours in primates and beyond may 280 

soon be monitored and measured with unprecedented detail with the advent of a new era in 281 

automated behavioural monitoring.   282 

Despite exciting advances, we would argue that researchers interested in animal 283 

emotions still need to retain some caution in their interpretations of automatically coded 284 

behavioural data, given that external behaviours may not always be reliable indices of 285 

underlying affect.  In the next section we discuss how combining such techniques with non-286 

invasive psychophysiological technologies such as infra-red thermography could support a 287 

deeper understanding of the nature and expression of animal emotion. We describe two 288 

different applications of thermography that can be applied to address the underlying affective 289 
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and physiological processes driving human and animal behaviour. First, we introduce infrared 290 

thermography (IRT) to assess thermal correlates of autonomic arousal, and second, infrared 291 

videography (IR) to study sleep, well-being, and behaviour in low-light conditions. Last, we 292 

briefly discuss another emerging method – microwave radars - which may be used to get 293 

insights into physiological processes like heart rates of primates without having to establish 294 

contact with the animals’ skin or body. 295 

 296 

Going beyond behavior: Using novel technologies to investigate physiological parameters 297 

non-invasively in animals 298 

 299 

Infrared thermography as a measure of physiological arousal  300 

 301 

Animals, like humans, behave in response to changes in their surrounding environment – 302 

notably the social one (Byrne, 1996; Smith, 1965; Whiten, 2000) – and these behaviors are 303 

often driven by underlying psychological and affective states, which some argue to be 304 

comparable to human emotions (Anderson & Adolphs, 2014; de Waal, 2011). Traditionally, 305 

observations of visible or audible behaviours have served as the primary source of data for 306 

linking behaviours to specific contexts and interpreting their function. However, the absence 307 

of observable behavior does not imply the absence of internal states. Animals continuously 308 

acquire and process diverse information about others, updating their knowledge of the world 309 

and others - especially of social relationships - to adjust their behavior accordingly (Byrne & 310 

Bates, 2007; Seyfarth et al., 2005). Yet, when cognitive and emotional processes cannot be 311 

directly accessed through behavioural correlates, new methods are needed.  312 

One recent technology increasingly adopted in comparative research is infrared 313 

thermography (IRT), which enables researchers to measure changes in skin surface temperature 314 
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in both humans and animals, providing insights into emotional responses (Fernández-Cuevas 315 

et al., 2015; Mccafferty, 2007). Like other key scientific technologies (e.g., fMRI), IRT was 316 

originally developed for industrial applications, such as detecting heat leaks in buildings, 317 

before being adapted by cognitive researchers (Cilulko et al., 2013). Prevalently used in 318 

controlled environments like laboratory settings and zoos at first (Proctor et al., 2013), IRT is 319 

increasingly being adopted in the wild to study a variety of species, including insects, birds, 320 

mammals, and primates (Stewart et al., 2005; Tattersall, 2016; Tattersall & Cadena, 2010). As 321 

reviewed by Brügger and Burkart (Chapter in this Book), IRT represents a new contactless and 322 

portable method to estimate underlying arousal states through measures of skin temperature, 323 

with a focus on Regions of Interest (ROIs) in the face (Ioannou et al., 2014; Kano et al., 2016; 324 

Nakayama et al., 2005). Through activation of the sympathetic nervous system, 325 

vasoconstriction reduces blood flow into the peripheral vessels, yielding detectable 326 

temperature changes in certain ROIs, including the nose tip and peri-orbital regions (Ioannou 327 

et al., 2014). Some studies have found that stress or fearful experiences like hearing 328 

conspecifics’ screams (Dezecache et al., 2017; Kano et al., 2016) elicit changes in facial 329 

temperatures in primates, presumably correlated with changes in internal states. Negatively 330 

valenced stimuli or contexts such as hearing screams or observing an injury typically result in 331 

drops in nasal temperature, although the direction of temperature change can differ across 332 

studies. For instance, other studies with humans have found temperature increases linked to 333 

negative emotional arousal (Aureli et al., 2015; Ioannou et al., 2016; Vreden et al., 2025), as 334 

well as temperature decreases for positive emotions (Nakanishi & Imai-Matsumura, 2008). In 335 

primates, drops in nasal temperature have also been detected in relation to playful experiences 336 

(Chotard et al., 2018). At present, the reasons underlying this apparent variability in 337 

temperature change directionality is not well understood. It appears that, while IRT can be used 338 

as indicator of arousal, its applicability to identify valence currently remains questionable and 339 
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requires further validation and testing. Additional to the nasal area, other facial areas such as 340 

the periorbital, upper lip, or nose bridge areas have been investigated (Chotard et al., 2018), as 341 

well as fingertip temperatures: Moritz and Dominy (2012) revealed profound temperature 342 

changes in the characteristic middle digit of the nocturnal aye-aye (Daubentonia 343 

madagascariensis) – a specialized touch sensory structure used during percussive and foraging 344 

– whenever it was actively used during touching behaviours.  345 

Despite the advances offered by IRT, there are limitations which need to be carefully 346 

addressed and mitigated, especially when applying this technology with wild animals. Early 347 

IRT studies were conducted under highly controlled – but sometimes ethically problematic – 348 

laboratory conditions, where animals were physically restrained while being exposed to 349 

negative or stressful stimuli (Nakayama et al., 2005). As growing evidence shows that the 350 

socio-ecological environment (i.e., captivity, sanctuary, wild) influence primate behaviours 351 

(Leavens et al., 2010), including their communication (Fröhlich et al., 2021), it is essential to 352 

acknowledge the challenges of studying animal emotions across diverse settings (de Vere & 353 

Kuczaj II, 2016). Since environmental factors, such as ambient temperature and humidity can 354 

significantly impact infrared measurements (but see Berthier et al., 2025), researchers 355 

conducting studies in controlled environments like zoos and laboratories can better control and 356 

regulate these variables (e.g., via air conditioning) and hence carefully validate the respective 357 

method (Fig 1 A and B). In contrast, field researchers must frequently monitor and control for 358 

these variables, either by manually inputting temperature, distance, and humidity into the 359 

cameras’ to automatically correct atmospheric transmission (available in specific FLIR camera 360 

models for example), or by using the camera built-in sensors to automatically recording and 361 

correcting these variables, or by statistically adjusting for variation after data collection (de 362 

Vevey et al., 2022). Nonetheless, even with these corrections, data may still be noisy, which 363 

can be further compromised by additional external variation caused by unpredictable weather 364 
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changes and sun exposure. Although careful monitoring of conditions and minimizing 365 

variations are crucial in both captive and wild settings, inconsistencies in published studies are 366 

being reported (Church et al., 2014), leading some researchers to question the validity and 367 

reliability of IRT findings (Ioannou et al., 2014; McCafferty, 2013). Given potentially greater 368 

variability in environmental conditions in naturalistic settings when compared to the more 369 

controlled environments, data in the wild should be interpreted with more caution. 370 

 371 

 372 

Figure 1. Example images from infrared thermography cameras used to measure facial 373 

and bodily temperatures of bonobos and chimpanzees. A: Nasal tip temperatures of a 374 

bonobo with a circled Region of Interest (ROI). Footage taken at La Vallée des Singes, France, 375 

captured with a FLIR T865 camera; left and right images show a bonobo face before and after 376 

a cooperation task, respectively. B: An adult male chimpanzee resting on the ground in the 377 
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Budongo Forest, Uganda, captured using the infrared sensor of a FLIR T530 camera (left); 378 

simultaneous capture of the same scene using the visible light sensor of the same FLIR T530 379 

camera (right). The temperature scale in C° is shown to the right of the infrared images. Image 380 

credits: Raphaela Heesen (A) and Adrian Soldati (B). 381 

 382 

Another current IRT limitation is lack of precision as to the physiological mechanisms 383 

underlying skin temperature changes. As noted above, directional changes in temperature 384 

across specific facial areas when comparing baseline and post stimulus presentations are not 385 

consistently replicated across studies, calling for further validation (Chotard et al., 2018; 386 

Ioannou et al., 2014; Kano et al., 2016). Although research on human emotions, physiology, 387 

and neurology provides useful reference points, these findings do not always translate directly 388 

to animals. The addition of complementary physiological measures alongside IRT, including 389 

endocrinology, pupil dilation, skin conductance, and heart rate monitoring can offer valuable 390 

insights (Guevara et al., 2022; Harrap et al., 2018; Kano et al., 2016). Emerging technologies 391 

for real-time monitoring of cognitive processes may also help clarify how physiological 392 

responses relate to emotion and cognition. For instance, Testard et al. (2024) combined 393 

behavioural observations with wireless neural recordings in free-ranging rhesus macaques 394 

(Macaca mulatta) during social interactions and found that responses to aggression, both 395 

behaviourally and neurally, were modulated by the presence of social partners, patterns 396 

aligning with results in chimpanzees (Barrault et al., 2022). However, many of these new 397 

methods currently involve varying degrees of invasiveness, undermining one of IRT’s ethical 398 

advantages. In sum, while IRT offers valuable physiological data, its full potential may only 399 

be realized when integrated within ethically valid frameworks integrating neurological, 400 

behavioural, and other physiological measures. Such a multi-dimensional approach would 401 

leverage knowledge of emotional and cognitive processes in animals. 402 
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 403 

Night-vision IR videography to quantify animal welfare and behaviour in low-light conditions 404 

 405 

A related application of IRT, infra-red videography (IR) – commonly known as “night vision”- 406 

has also been instrumental in advancing the study of animal behaviour under low-light 407 

conditions. Even though both IR and IRT operate within the infrared spectrum, IR specifically 408 

relies on near-IR wavelengths, which require some active illumination, while IRT relies on far-409 

IR radiation emitted as heat by objects. Near-IR light is undetectable to most mammals (Ma et 410 

al., 2019), making it a suitable tool to study behaviour without researcher interference, 411 

especially in nocturnal animals. Since the late 20th century (Conner & Masters, 1978), 412 

researchers have employed IR technology to observe nocturnal activities without disturbing 413 

natural behaviors. In recent years, the growing accessibility and affordability of IR equipment 414 

have significantly expanded its use in behavioral research (Goolsby et al., 2024; Stafstrom & 415 

Hoy, 2024). Today, IR videography is pervasive, spanning studies in industry (Fukasawa et al., 416 

2018), zoo settings (Seyrling et al., 2022), and field research (Funkhouser et al., 2025). 417 

IR videography has been pivotal in advancing video-based actigraphy to assess sleep 418 

quality non-invasively. While sleep is not per se an affective state, its direct impact on 419 

cognition, behaviour, and emotions has been widely acknowledged (Goldstein & Walker, 420 

2014; Hickman et al., 2024). Most notably, disturbed sleep in humans is considered a robust 421 

risk factor for psychopathologies, and its disruption is associated with anxiety, bipolar disorder, 422 

depression, psychosis, obsessive-compulsive disorder, dissociation, alcoholism, and eating 423 

disorders (Tkachenko et al., 2014; Watson, 2001). In this way, assessing sleep quality and 424 

processes can provide crucial insights into the wellbeing, behavior and cognition of the studied 425 

animals. Importantly, the mechanism underlying the association between sleep disruption and 426 

psychopathologies is emotional regulation (Goldstein & Walker, 2014). Thus, disrupted sleep 427 
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could impact the regulatory capacities of an animal to control emotions and to perform during 428 

cognitive or behavioral tasks, which may drastically impact results in comparative cognitive 429 

studies. Sleep can therefore be an objective target behavior to assess emotional well-being in 430 

nonverbal agents such as primates, which are notably hard to assess with traditional tools based 431 

on verbal assessment (Úbeda et al., 2021).  432 

Thus far, the state-of-the-art for IR video-based actigraphy mainly applies to humans 433 

(Heinrich et al., 2013; Long et al., 2019; Scatena et al., 2012), especially neonates and preterm 434 

infants (D. Zhang et al., 2023). Traditional methods like polysomnography, while highly 435 

accurate, require sleeping in an unfamiliar lab setting, which can be intrusive and stressful for 436 

subjects (Long et al., 2019). Although polysomnography is the gold standard in measurements 437 

of sleep, it requires cumbersome equipment, including electrodes attached to participants. 438 

Additionally, because preterm infants’ skin is fragile, adding such sensors to the skin can be 439 

hazardous (Long et al., 2021). By contrast, IR video-based actigraphy allows for the 440 

unobtrusive recording of sleep behaviors in more diverse (non-lab) settings, including in field 441 

settings with wild animals. In humans at least, it can also be coded automatically, which offers 442 

substantial advantages, as previous described, over manual coding methods (e.g., Anders et al., 443 

1992). Such methods rely either on interpreting overall body movement as a proxy for activity 444 

(Heinrich et al., 2013), or the extraction of key visual features that are indicative of behaviors 445 

that aid in sleep classification, like breathing (Sun et al., 2019; D. Zhang et al., 2023). To date, 446 

most studies with animals are still reliant on manual IR scoring (Funkhouser et al., 2025; 447 

Seyrling et al., 2022), though some studies have also attempted automated coding. For 448 

example, Lund et al. (2024) showed that DeepLabCut and Create ML – two different Machine 449 

Learning algorithms - automatically classify nocturnal behavior in captive elephants with high 450 

similarity to expert manual coding. The study included several behavioral categories such as 451 

foraging, drinking, laying down, standing, and playing with environmental enrichment. In 452 
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addition, automated methods have also been used to classify sleeping behavior in canids 453 

(Schork et al., 2024), suggesting it may be suitable for primate studies as well. There is hence 454 

clearly exciting scope for the development and expansion of automated IR methods in the field 455 

of comparative science, including for the study of animal affect. 456 

As noted, the biggest strength of video IR technologies is observing nocturnal 457 

behaviour without disrupting it, thus making it ideal for the study of nocturnal primates. 458 

Although still in its infancy, IR also stands great potential to enhance our understanding of 459 

animal communicative behaviour. A good example is the enhancement of visual signals 460 

emitted in low-light conditions such as facial expressions (Tlaie, Abd El Hay, et al., 2025; Zhao 461 

et al., 2011). Illumination from visible-spectrum light sources can alter or obscure the visual 462 

cues necessary for interpreting facial expressions, for example by changing colour tones or 463 

creating shadows that obsvtruct visual access to facial features. Shadows, especially, can make 464 

it difficult to perceive facial expressions. These disruptions are eliminated or greatly 465 

diminished when analysing IR footage, preserving the integrity of the visual signal during 466 

recording, which is especially relevant in view of the need for high quality and resolution data 467 

to study facial expressions (Vick et al., 2007). In IR videography, colours are reduced to 468 

grayscale and contrast is maximized. Thus, the effects of changes in lighting and shadows (e.g., 469 

a shadow partially or completely covering a facial expression) are much less obtrusive in IR 470 

compared to conventional videography. Therefore, IR videography is particularly beneficial 471 

when studying communicative signals low or inconsistent illumination environments (e.g., 472 

under the canopy, during dusk or dawn). When used in combination with other techniques, IR 473 

videography has the potential to illuminate rich insights into animal behaviour and 474 

psychophysiological processes, including assessment of emotional states (IRT: Kano et al., 475 

2016; microwave radar sensors: Yuan et al., 2024). 476 

 477 
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Microwave radars as non-contact measure to examine physiology 478 

 479 

Microwave radars have recently emerged as another promising technology to noninvasively 480 

measure aspects of physiology in primates without contact. Radars work by emitting 481 

electromagnetic waves and measuring minute changes in the reflected signal caused by subtle 482 

movements of the chest or body movements that are caused by breathing and heartbeat. 483 

Technologies like Impulse Radio Ultra-Wideband (IR-UWB) or Frequency-Modulated 484 

Continuous Wave (FMCW) have already been leveraged to estimate breathing and heart rates 485 

non-invasively in macaques (Minami et al., 2024; J. Zhang et al., 2024), chimpanzees 486 

(Matsumoto et al., 2024), and bonobos (Yuan et al., 2024). While they are still being validated 487 

and established for generic use, radars are becoming increasingly reliable and promising. Like 488 

with IRT, the main advantage of radars is the contactless acquisition of physiological data, thus 489 

minimizing unwanted influence on animal physiology through stressful procedures. Unlike 490 

IRT, radars output a continuous stream of data for heart and breathing rate instead of relying 491 

on manual annotation of video frames. These data can be quickly processed with Fourier or 492 

wavelet-based algorithms, or machine learning, resulting in real-time readings. Another 493 

interesting aspect of radars is that they seem to perform adequately through barriers (e.g., 494 

plexiglass: Yuan et al., 2024), which can be especially useful in captive settings that tend to 495 

include such substrates. In short, while further validation is needed, radars represent an exciting 496 

emerging method that can be applied for physiological measurements, particularly due to their 497 

suitability to measure through physical barriers and in real-time, setting them apart from other 498 

existing technologies.  499 

 500 

Drawing a bigger picture of affect: combinations of behavioral and physiological data  501 

 502 
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So far, we have considered how emerging methods in automated behavioural analysis and 503 

infra-red promote exciting advancements in the field of comparative affective science. In what 504 

follows, we describe examples of how the combination of IRT with behavioural analyses can 505 

be used to inform on internal states. We focus here on responses to acoustic signals, given this 506 

has been a topic of increased research attention especially in primates.  We argue that IRT 507 

offers a non-invasive method to assess how primates process acoustic information, notably 508 

when combined with behavioural measures.  509 

Marmoset monkeys (Callithrix jacchus) are known for their rich and complex vocal 510 

interactions (Burkart et al., 2014; Snowdon, 2009; Takahashi et al., 2013) and use specific calls 511 

to address particular individuals within their social groups (Oren et al., 2024). Exposure to 512 

conspecific vocal interactions has been associated with changes in marmoset nasal skin 513 

temperature, suggesting an internal physiological response to social auditory stimuli (Brügger 514 

et al., 2021). Interestingly, such thermal responses may occur in the absence of overt beavioural 515 

cues, thus offering insights into underlying, implicit affective processes not necessarily visible 516 

at the surface. Similarly, chimpanzees (Pan troglodytes) engage in vocal exchanges during 517 

fission-fusion events (Mitani & Nishida, 1993) using long calls with individual signatures 518 

(Marler & Hobbett, 1975). Research has shown that exposure to conspecific vocalizations can 519 

lead to physiological responses in wild chimpanzees, such as changes in skin temperature, 520 

indicating heightened arousal or alertness (Dezecache et al., 2017). Temperature changes are 521 

also visible across different interaction contexts varying from cooperative to competitive (de 522 

Vevey et al., 2022). These responses may reflect the chimpanzees' ability to perceive and adjust 523 

their understanding of social dynamics and environmental events combining auditory and 524 

contextual cues, processing acoustic information in ways more sophisticated than their visible 525 

reactions alone would suggest. Relatedly, a recent developmental study with IRT revealed that 526 

10-month-old infants showed significant changes in nasal temperature upon hearing distress 527 
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cries of aged-matched peers, when compared to thermal responses to control sounds, including 528 

acoustically matched aversive noises (Vreden et al., 2025). Interestingly, although infants also 529 

showed strong aversive behavioural responses to crying over other stimuli, these behavioural 530 

responses were not directly correlated with the thermal responses. The authors suggest at least 531 

two possible explanations for this. First, methodologically, assessments of behaviour and 532 

physiology could occur on different temporal and mathematical scales. Thermal responses are 533 

temporally slower to occur (Kuraoka & Nakamura, 2011), while behavioural responses occur 534 

almost immediately. Second, the authors used maximum relative changes (to baseline) as their 535 

thermal measurement compared to absolute ratings of behavioural affect. Although these 536 

reflect established approaches for each method, such effects raise issues for the compatibility 537 

of thermal and behavioural data – an important issue requiring further inspection and 538 

clarification. Different measures of emotions thus rarely show strong convergence. This 539 

supports the stance that emotions are multiply determined and multi-dimensional, with no one 540 

measure being able to capture every aspect, calling for different measures that can – in 541 

combination – draw more complete pictures of these complex phenomena. 542 

From the production perspective, integrating IRT with acoustic analyses can 543 

nonetheless provide deeper insights into the interplay between arousal and vocal production. It 544 

is evident that variations in internal states can increase the informational value of a 545 

communicative signal. For example, in human language, the acoustic structure of a sentence is 546 

impacted by emotional states, even when the literal meaning of that sentence remains 547 

unchanged. The sentence “The train has arrived” can be stated in a sad, happy or neutral way, 548 

without impacting its core meaning: there is a train approaching (Oller et al., 2013; Taylor et 549 

al., 2022). Here, the emotional tone of the expression can be used to derive pragmatic 550 

inferences as it can help listeners better understand subtle details about the situation and adopt 551 

an appropriate reaction (e.g., console the speaker who is sad that their friend is leaving). 552 
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Similarly, animal signals convey meaning that goes beyond a simple reflection of the emotional 553 

state of the individual (see for review Berthet et al., 2023). The meaning can be determined by 554 

investigating the features of the circumstances (FoCs) present when a specific signal is emitted 555 

(Berthet et al., 2023, 2025) and is reflected in the largest set of FoCs that appear across all 556 

occurrences of the signal. Although a call can provide information about the caller’s internal 557 

state (e.g., “I am scared”), it can also denote a behaviour at the time of emission (e.g., “I start 558 

travelling”) or after the emission of the call (“I will approach you”), as well as the expected 559 

reaction of the receiver (e.g., “Run away”) and the presence of external events (e.g., “There is 560 

a snake”) (Berthet et al., 2023). 561 

Thus, while the acoustic structure of any vocalization can be impacted by a caller’s 562 

emotional state (Briefer, 2012), this does not mean that all signals are emotional or exclusively 563 

convey emotions. Rather than dichotomously naming certain expressions as “emotional”, as in 564 

the case of a bared-teeth facial expression in primates, a more useful termpinology would be 565 

to refer to it as a communicative signal with an emotional message or affective information 566 

along with its referential meaning. Viewed in this light, affective cues accompanying a signal 567 

can help receivers draw pragmatic inferences and better navigate their social world as a result 568 

(Arnold & Bar-On, 2020; Berthet et al., 2023; Oller & Griebel, 2014). A striking example 569 

comes from wild chimpanzees. During social feeding events, chimpanzees show increased 570 

social monitoring, especially during competition over contested resources, where they gather 571 

information to prepare for potential aggression (Barrault et al., 2022). Under these 572 

circumstances, the presence of dominant individuals has been shown to lower nasal 573 

temperature in recipients; except when allies are present, which was associated with higher 574 

nasal temperature. This is likely because allies act as a buffer and may provide support in case 575 

of escalation (Barrault et al., 2022). Although still awaiting further testing, one might speculate 576 

that the production of the same call type in the presence of a dominant male may be associated 577 
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with subtle acoustic variations matching skin temperature changes (e.g., lower nasal 578 

temperature) and inform others that the signaller is stressed, while when produced in the 579 

presence of friends it may be linked to a different internal state (e.g., higher nasal temperature) 580 

and inform others that the signaller is relaxed and “wants to bond”. In summary, combining 581 

IRT data with a rigorous investigation of the context of emission of a signal (or multimodal 582 

combination thereof) can enhance our understanding of the complex interplay between 583 

physiological processes, signal meaning, and pragmatics, with implications for our 584 

understanding of primate communicative complexity and underlying cognitive processes. 585 

One further fruitful research direction for which IRT, combined with behavioural data, 586 

now offers exciting opportunities is the study of deceptive signalling in animals. A common 587 

assumption is that most behaviors are honest rather than strategic attempts to manipulate others, 588 

yet primates have been documented to engage in tactical deception (Byrne, 1996). For example, 589 

capuchin monkeys (Cebus apella nigritus) produce alarm calls when accessing food to deceive 590 

dominant individuals into leaving, thereby reducing feeding competition (Wheeler, 2009). 591 

While some signals may be more difficult to suppress (e.g., a scream during aggression) or to 592 

decouple across modalities, such as in the case of screaming without a concurrent open-mouth 593 

facial expression (but see Slocombe & Zuberbühler, 2007), other complex signals can be 594 

flexibly produced and structured even during competitive and high-arousal contexts, such as 595 

pant hoot sequences accompanying dominance displays in chimpanzees (Soldati et al., 2022). 596 

Physiological responses to external events are even harder, if not impossible, to voluntary 597 

control. For example, some temperature increases may be externally visible, e.g., cheek 598 

blushing or lip reddening in humans (Ioannou et al., 2014), whereas changes in nasal 599 

temperature as a result of internal states are typically not. This suggests that such thermal 600 

signatures, largely inaccessible to observers, are likely under little selective pressure to be used 601 

for deception. This raises the intriguing possibility that the “true” internal state of a signaller 602 
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may be revealed more accurately with the help of IRT, particularly in deceptive contexts. For 603 

instance, a capuchin monkey producing a false alarm call while feeding may display a thermal 604 

response that differs from the arousal state triggered by a genuine predator encounter. IRT, 605 

therefore, represents a promising tool for exploring the affective and cognitive underpinnings 606 

of primate communication through a range of exciting research questions. 607 

As radars have only recently been applied to measuring physiology, studies combining 608 

it with other techniques are scarce. The most common combination at present seems to be with 609 

IRT, in the context of healthcare monitoring in humans. For example, Kundu et al. (2023) used 610 

IRT in combination with a FMCW radar to enhance signal detection via redundancy – both 611 

were employed to measure heart and breathing rates, but were used interchangeably depending 612 

on whether one signal was of higher quality than the other. More specifically, while FMCW 613 

radars are sensitive to body movement, IRT can underperform in cases of abrupt temperature 614 

changes. Owing to this combinatorial approach, Kundu et al.’s method was able to retrieve 615 

reliable measures by relying on the signal that was least affected by adverse conditions. A 616 

recent study (Del Regno, 2024) employed a combination of radar and IRT to detect apnea, by 617 

directing the radar at the chest to measure breathing effort, while IRT measured actual 618 

breathing. While combinations of radar and other techniques are still under development, there 619 

are some applications in specific scenarios that may find a functional analogue in comparative 620 

affective science. For instance, microwave radars could be simultaneously measured with IRT 621 

in animal research to examine which changes are pertinent to the emotional state of interest. In 622 

addition, given the novel applications of these technologies, the combination of the two 623 

methods could help validate the use of either in new settings, or to measure new body areas, 624 

akin to how early IRT studies were paired with heart-rate measures (Kano et al., 2016). Given 625 

that accessing and measuring emotional states has proven particularly challenging thus far, 626 

converging patterns from multiple methods may provide the only reliable way forward.  627 
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 628 

Conclusion and outlook 629 

 630 

The field of comparative affective science is at the verge to venture into an exciting new 631 

direction to study animal emotions. As discussed in our chapter, novel technologies like AI-632 

based automated tracking, IRT, IR and microwave radars could enable large-scale and 633 

systematic combinatorial analyses (Fig 2 A and B) to uncover physiological processes 634 

underlying (communicative) behavior. Although some efforts have been made into this 635 

direction, combining IRT with behavioral coding (Barrault et al., 2022; de Vevey et al., 2022), 636 

the field needs more detailed validation studies especially during communication events (e.g., 637 

(Dezecache et al., 2017). Combinatorial outputs using IRT and regular video analyses may 638 

offer insights into how communication in animals might be linked to emotional states, how 639 

animals navigate their social worlds, and the extent to which certain species’ signalling efforts 640 

are driven by a combination of voluntary control and affect. Here, pooling data from the wild 641 

and controlled captive settings would be highly beneficial to deliver informed outputs. With 642 

sufficient data included, such efforts could enable researchers to derive “behavior-physiology 643 

profiles” for certain signals, such as for the bared-teeth facial expression in primates (Fig 2 C), 644 

to determine the underlying affective and cognitive mechanisms driving communication.  645 

Although for now only hypothetical, such behaviour-physiology profiles for 646 

communicative signals (Fig. 2 C) could be produced across species and socio-ecological 647 

contexts once sufficient empirical data has been generated through systematic comparisons. As 648 

a result, researchers will be able to derive more informed interpretations based on 649 

comprehensive and multi-dimensional data, instead of a priori assumptions on whether certain 650 

signals are (or are not) “emotional”. We hope that, over time and through the use of more 651 

controlled combinatorial approaches as outlined in our chapter, researchers will uncover deeper 652 
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insights into which communicative signals truly qualify as expressions of emotion, or which, 653 

contrary to the expected, reveal the remarkable flexibility with which animals coordinate social 654 

interactions through the intertwined expression of intent and affect. 655 

 656 

 Figure 2. Multi-component methods for comparative research on animal emotions and 657 

communication. Illustration of the three steps aimed at combining current methods and 658 

technologies to create new behaviour-physiology profiles of communicative signals. A: data is 659 

simultaneously collected using available methods including IRT, AI-based posture estimation, 660 

behavioural coding, and IR; B: behavioural and physiological data are combined to be analysed 661 

together; C: behavior-physiology profiles are created by interpreting behavioural and 662 

physiological results together. In the light purple box on the right, we used the bared-teeth face 663 

in bonobos to exemplify hypothetical results and interpretations that researchers may obtain 664 

adopting a combinatorial approach (these results are not based on empirical findings and only 665 

server the purpose of showcasing the approach).  Macaque face in IR videography and resulting 666 

graph adapted from Tlaie et al. (2025) under CC4.0 license 667 

(https://creativecommons.org/licenses/by/4.0/). Radar data can also be taken into 668 

consideration, though was not included in the figure here given its comparably limited 669 

https://creativecommons.org/licenses/by/4.0/
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application in the literature thus far. 670 
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